Serine transhydroxymethylase isoenzymes from a facultative methylotroph.

نویسندگان

  • M L O'Connor
  • R S Hanson
چکیده

Two serine transhydroxymethylase activities have been purified from a facultative methylotrophic bacterium. One enzyme predominates when the organism is grown on methane or methanol as the sole carbon and energy source, whereas the second enzyme is the major isoenzyme found when succinate is used as the sole carbon and energy source. The enzyme from methanol-grown cells is activated by glyoxylate, is not stimulated by Mg2+, Mn2+, or Zn2+, and has four subunits of 50,000 molecular weight each. The enzyme from succinate-grown cells is not activated by glyoxylate and is stimulated by Mg2+, Mn2+, and Zn2+, and sodium dodecyl sulfate-acrylamide gel electrophoresis indicates that this enzyme has subunit molecular weight of 100,000, the same as the molecular weight obtained for the active enzyme. Cells grown in the presence of both methanol and succinate incorporate less methanol carbon per unit time than cells grown on methanol and have a lower specific activity of the glyoxylate-activated enzyme than methanol-grown cells. Adenine, glyoxylate, or trimethoprim in the growth medium causes an increased level of serine transhydroxymethylase in both methanol- and succinate-grown cells by stimulating the synthesis of the glyoxylate-activated enzyme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic, inhibitory and stereochemical studies on cytoplasmic and mitochondrial serine transhydorxymethylases.

By using cytoplasmic and mitochondrial serine transhydroxymethylase isoenzymes from rabbit liver, it was shown that both enzymes exhibited similar ratios of serine transhydroxymethylase/threonine aldolase activities. Both enzymes catalysed the removal of the pro-S hydrogen atom of glycine, which was greatly enhanced by the presence of tetrahydrofolate. The cytoplasmic as well as the mitochondri...

متن کامل

Identification and mutation of a gene required for glycerate kinase activity from a facultative methylotroph, Methylobacterium extorquens AM1.

A gene (gckA) responsible for the activity of glycerate kinase has been identified within a chromosomal fragment of the serine cycle methylotroph Methylobacterium extorquens AM1. A mutation in gckA leads to a specific C1-negative phenotype. The polypeptide sequence derived from gckA showed high similarity to a product of ttuD essential for tartrate metabolism in Agrobacterium vitis. Our data su...

متن کامل

Selection of Salmonella typhimurium mutants with altered serine transhydroxymethylase regulation.

In Salmonella typhimurium the glyA gene product, serine transhydroxymethylase (E.C. 2.1.2.1.; L-serine:tetrahydrofolate-5,10-hydroxymethyltransferase) is responsible for the interconversion of serine and glycine. This reaction also provides the cell with one-carbon units from the 5,10-methylene-tetrahydrofolate formed during glycine synthesis. Despite the importance of this enzyme, however, no ...

متن کامل

Purification and Characterization of Hydroxypyruvate Reductase from the Facultative Methylotroph Methylobacterium extorquens AMI

Hydroxypyruvate reductase was purified to homogeneity from the facultative methylotroph Methylobacterium extorquens AM1. It has a molecular mass of about 71 kDa, and it consists of two identical subunits with a molecular mass of about 37 kDa. This enzyme uses both NADH (Km = 0.04 mM) and NADPH (Km = 0.06 mM) as cofactors, uses hydroxypyruvate (Km = 0.1 mM) and glyoxylate (Km = 1.5 mM) as the on...

متن کامل

Evidence for the involvement of serine transhydroxymethylase in serine and glycine interconversions in Salmonella typhimurium.

Salmonella typhimurium can normally use glycine as a serine source to support the growth of serine auxotrophs. This reaction was presumed to occur by the reversible activity of the enzyme, serine transhydroxymethylase (E. C. 2. 1. 2. 1; L-serine: tetrahydrofolic-5, 10 transhydroxymethylase), which is responsible for glycine biosynthesis. However, this enzyme had not been demonstrated to be sole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 124 2  شماره 

صفحات  -

تاریخ انتشار 1975